


SPARE VACUUM CUP											
ltem	Force Kg	Volume cm ³	A Ø	B Ø	C Ø	D Ø	E	F	Н	N Ø	Weight g
01 65 15 *	8.29	9.1	68	63	59	65	3	7	17	27	21.4

* Complete the code indicating the compound: A= oil-resistant rubber; N= natural para rubber; S= silicon

SPECIAL BUILT-IN VACUUM CUP WITH BALL VALVE

ltem	Force Kg	A Ø	B Ø	D Ø	E	F	G	н	Vacuum cup item	Weight g
05 65 65 *	8.29	69	40	65	19	47.5	14.5	67.5	01 65 15	528

* Complete the code indicating the compound: A= oil-resistant rubber; N= natural para rubber; S= silicon

Note: The force of the vacuum cups indicated in the table represents 1/3 of the value of the theoretical force calculated at a level of vacuum of -75 KPa and a factor of safety 3. Transformation ratio: N (newton) = Kg x 9.81 (force of gravity) inch = $\frac{mm}{25.4}$; pounds = $\frac{g}{453.6}$ = $\frac{Kg}{0.4536}$ 1