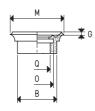
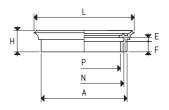


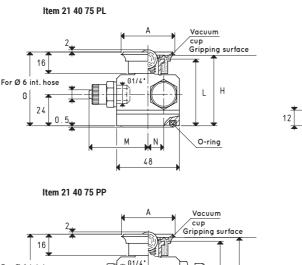
RECTANGULAR VACUUM CUPS WITH BALL VALVE, SELF-LOCKING SUPPORT AND RELEASE BUTTON

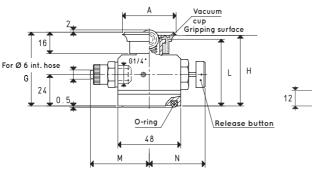

These cups represent a true mobile clamping system. They are composed of:

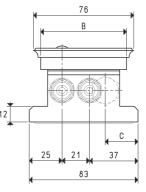

- A sturdy anodised aluminium support with a wide surface at the base limited by a seal whose purpose is to fix it to the bearing surface.
- A standard rectangular flat cup which is cold fitted onto the upper part of the support for gripping the load.
- A ball valve that opens up creating vacuum, only when activated by the load to be gripped.
- A release button that allows placing the support even with the vacuum inserted.
- Two guick couplings for vacuum connection.

The detection of vacuum for gripping and releasing the support from the bearing surface and gripping and releasing the load can be made via three-way vacuum valves or solenoid valves.

All cups with self-locking support of this and other ranges with the gripping plane at the same height can be used simultaneously, even if they are of different types or have different sizes.


76


83


SPARE VACUUM CUPS

Item	Force Kg	Volume cm³	A	В	Е	F	G	Н	L	М	N	0	Р	Q	Weight g
01 40 75 *	6.7	9.2	64	29	3	7.5	6.5	16.0	75	40	59	24	54	19	15.6

^{*} Complete the code indicating the compound: A= oil-resistant rubber; N= natural para rubber; S= silicon

VACUUM CUPS WITH BALL VALVE. SELF-LOCKING SUPPORT AND RELEASE BUTTON

ltem	Force Kg	Α	В	С	G	Н	L	М	N	Vacuum cup item	O-ring item	Weight Kg
21 40 75 PL *	6.7	41	55	7	56.5	54.5	51	45.5	12	01 40 75	00 16 09	0.460
21 40 75/84 PL *	6.7	41	55	7	86.5	84.0	81	45.5	12	01 40 75	00 16 09	0.702
21 40 75 PP *	6.7	41	55	25	56.5	54.5	51	45.5	45	01 40 75	00 16 09	0.460
21 40 75/ 84 PP *	6.7	41	55	25	86.5	84.0	81	45.5	45	01 40 75	00 16 09	0.702

^{*} Complete the code indicating the compound: A= oil-resistant rubber; N= natural para rubber; S= silicon

Note: The force of the vacuum cups indicated in the table represents 1/3 of the value of the theoretical force calculated at a level of vacuum of -75 KPa and a factor of safety 3.

Transformation ratio: N (newton) = Kg x 9.81 (force of gravity)

inch = $\frac{\text{mm}}{25.4}$; pounds = $\frac{\text{g}}{453.6}$ = $\frac{\text{Kg}}{0.4536}$