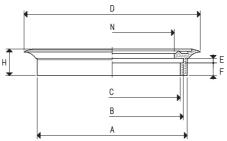
ROUND VACUUM CUPS WITH BALL VALVE AND SELF-LOCKING SUPPORT

These cups represent a true mobile clamping system.

They are composed of:

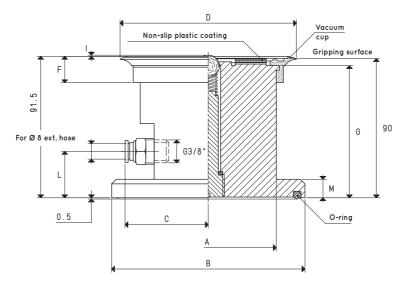

- A sturdy aluminium support with a wide surface at the base limited by a seal whose purpose is to fix it to the bearing surface.
- A standard circular flat cup which is cold fitted onto the upper part of the support for gripping the load.
- A ball valve that opens up creating vacuum, only when activated by the load to be gripped.
- Two quick couplings for vacuum connection.

The gripping plane of these cups is covered with a special non-slip plastic coating, which is particularly suited for clamping glass and smooth marble.

The detection of vacuum, for gripping and releasing the support, can be made via threeway vacuum valves or solenoid valves.

All cups with self-locking support of this and other ranges with the gripping plane at the same height can be used simultaneously, even if they are of different types or have different sizes.

Note: Available with support for mechanical fixing with code 28, instead of 18.



1

CDADE	VACUUM	
SPAKE	VACUUM	CUPS

SPARE VACUUM CUPS											
ltem	Force Kg	Volume cm ³	A Ø	B Ø	C Ø	D Ø	E	F	Н	N Ø	Weight g
01 85 15 M *	14.18	13.0	68	63	59	85	3	7	17	53	26.2
01 110 10 M *	23.74	24.9	96	91	87	114	3	8	17	80	40.1
01 150 10 M *	45.00	75.7	133	125	118	154	4	11	23	117	98.3
01 250 20 *	122.60	200.0	235	227	220	254	4	11	23	220	188.6

* Complete the code indicating the compound: A= oil-resistant rubber; N= natural para rubber; S= silicon; BA= stain-resistant Biond

VACUUM CUPS WITH BALL VALVE AND SELF-LOCKING SUPPORT

ltem	Force Kg	A Ø	B Ø	C	D Ø	F	G	I	L	М	Vacuum cup item	0-ring item	Weight Kg
18 85 15/90 MT *	14.18	60	98	42	85	17	85.0	1	30	12	01 85 15 M	00 16 06	0.880
18 110 10/90 MT *	23.74	88	125	51	114	17	85.5	1	30	12	01 110 10 M	00 16 07	1.704
18 150 10/90 MT *	45.00	120	165	68	154	23	85.0	1	30	12	01 150 10 M	00 16 08	3.158
18 250 20/90 MT *	122.60	223	270	121	254	23	85.0	1	33	15	01 250 20	00 18 09	10.322

* Complete the code indicating the compound: A= oil-resistant rubber; N= natural para rubber; S= silicon; BA= stain-resistant Biond

ind

Note: The force of the vacuum cups indicated in the table represents 1/3 of the value of the theoretical force calculated at a level of vacuum of -75 KPa and a factor of safety 3.

Transformation ratio: N (newton) = Kg x 9.81 (force of gravity)

h =
$$\frac{mm}{25.4}$$
; pounds = $\frac{g}{453.6}$ = $\frac{Kg}{0.4536}$