


SELF-LOCKING VACUUM CUPS WITH TRACTION RELEASE

VACUUM CUPS WITH SUPPORT, SPARE PART

Item	Force Kg	Volume cm³	A Ø	B Ø	D Ø	E	G	Н	Vacuum cup item	Support item	Support material	Weight g
08 60 10 *	7.06	16.1	15	G1/4"	60	22	9.5	36	01 60 10	00 08 22	aluminium	20.8
08 85 10 *	14.18	48.8	25	G1/4"	85	41	14.0	55	01 85 10	00 08 28	aluminium	49.3

^{*} Complete the code indicating the compound: A= oil-resistant rubber; N= natural para rubber; S= silicon

SELF-LOCKING VACUUM CUPS WITH TRACTION RELEASE

Item	Force Kg	D Ø	E	Н	Vacuum cup item	Weight g
17 60 10 *	7.06	60	22	96	08 60 10	415
17 85 10 *	14.18	85	41	115	08 85 10	444

^{*} Complete the code indicating the compound: A= oil-resistant rubber; N= natural para rubber; S= silicon

Note: The force of the vacuum cups indicated in the table represents 1/3 of the value of the theoretical force calculated at a level of vacuum of -75 KPa and a factor of safety 3. Transformation ratio: N (newton) = Kg x 9.81 (force of gravity) inch = $\frac{mm}{25.4}$; pounds = $\frac{g}{453.6}$ = $\frac{Kg}{0.4536}$