

SPECIAL BELLOWS CUPS WITH SUPPORTS

Vacuum cup item	Force	Bellows stroke	Volume	Support	Support	Weight	Vacuum cup with support	Weight
	Kg	mm	cm ³	item	material	g	item	g
01 42 90 *	3.00	13	34.6	00 08 05	brass	10.0	08 42 90 *	34.5

* Complete the code indicating the compound: A= oil-resistant rubber; N= natural para rubber; S= silicon

Vacuum cup item	Force	Bellows stroke	Volume	Support	Support	Weight	Vacuum cup with support	Weight
	Kg	mm	cm ³	item	material	g	item	g
01 42 90 *	3.00	13	34.6	00 08 14	brass	9.8	08 42 90 F *	34.3

* Complete the code indicating the compound: A= oil-resistant rubber; N= natural para rubber; S= silicon

Note: The force of the vacuum cups indicated in the table represents 1/3 of the value of the theoretical force calculated at a level of vacuum of -75 KPa and a factor of safety 3. Transformation ratio: N (newton) = Kg x 9.81 (force of gravity) inch = $\frac{mm}{25.4}$; pounds = $\frac{g}{453.6}$ = $\frac{Kg}{0.4536}$ Adapters for GAS - NPT threading available on page 1.130 1