



Vacuum cup item	Force Kg	Volume cm³	Support item	Support material	Weight g	Vacuum cup with support item	Weight g
01 25 28 *	1.23	3.4	00 08 03	brass	9.0	08 25 28 *	10.7

* Complete the code indicating the compound: A= oil-resistant rubber; N= natural para rubber; S= silicon

Vacuum cup item	Force Kg	Volume cm³	Support item	Support material	Weight g	Vacuum cup with support item	Weight g
01 25 28 *	1.23	3.4	00 08 04	brass	8.1	08 25 28 F *	9.8

^{*} Complete the code indicating the compound: A= oil-resistant rubber; N= natural para rubber; S= silicon

Vacuum cup	item	Force Kg	Volume cm³	Support item	Support material	Weight g	Vacuum cup with support item	Weight g
01 26 10	*	1.33	1.1	00 08 60	brass	5.6	08 26 10 *	6.5

^{*} Complete the code indicating the compound: A= oil-resistant rubber; N= natural para rubber; S= silicon

Note: The force of the vacuum cups indicated in the table represents 1/3 of the value of the theoretical force calculated at a level of vacuum of -75 KPa and a factor of safety 3. Transformation ratio: N (newton) = Kg x 9.81 (force of gravity) inch = $\frac{mm}{25.4}$; pounds = $\frac{g}{453.6}$ = $\frac{Kg}{0.4536}$ Adapters for GAS - NPT threading available on page 1.130

1.79