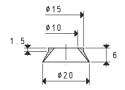
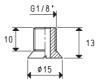
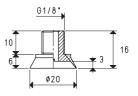

SPECIAL VACUUM CUPS WITH SUPPORTS

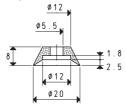


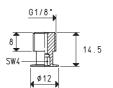


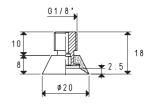


Vacuum cup item	Force Kg	Volume mm³	Support item	Support material	Weight g	Vacuum cup with support item	Weight g
01 20 04 *	0.78	365	00 08 242	brass	1.8	08 20 04 *	2.0

^{*} Complete the code indicating the compound: A= oil-resistant rubber; N= natural para rubber; S= silicon

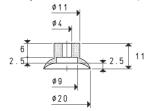


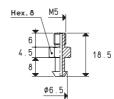


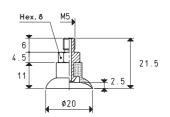


Vacuum cup item	Force Kg	Volume mm³	Support item	Support material	Weight g	Vacuum cup with support item	Weight g
01 20 06 *	0.78	1068	00 08 243	brass	6.0	08 20 06 *	6.3

^{*} Complete the code indicating the compound: A= oil-resistant rubber; N= natural para rubber; S= silicon







Vacuum cup item	Force Kg	Volume mm³	Support item	Support material	Weight g	Vacuum cup with support item	Weight g
01 20 08 *	0.78	804	00 08 60	brass	5.6	08 20 08 *	6.4

^{*} Complete the code indicating the compound: A= oil-resistant rubber; N= natural para rubber; S= silicon

Vacuum cup item	Force Kg	Volume mm³	Support item	Support material	Weight g	Vacuum cup with support item	Weight g
01 20 11 *	0.78	784	00 08 245	brass	2.7	08 20 11 *	3.7

^{*} Complete the code indicating the compound: A= oil-resistant rubber; N= natural para rubber; S= silicon

Note: The force of the vacuum cups indicated in the table represents 1/3 of the value of the theoretical force calculated at a level of vacuum of -75 KPa and a factor of safety 3. Transformation ratio: N (newton) = Kg x 9.81 (force of gravity) inch = $\frac{mm}{25.4}$; pounds = $\frac{g}{453.6}$ = $\frac{Kg}{0.4536}$ Adapters for GAS - NPT threading available on page 1.130