

VACUUM CUP

ltem	Force Kg	Volume cm³	A Ø	B Ø	C Ø	D Ø	E	F	Н	N Ø
01 250 20 *	122.60	200.0	235	227	220	254	4	11	23	220

^{*} Complete the code indicating the compound: A= oil-resistant rubber; N= natural para rubber; S= silicon

SUPPORT

ltem	A Ø	B Ø	C Ø	D Ø	E	Н	М	For vacuum cup item	Support material	Weight Kg
00 08 115	223	M12	G3/8"	230	4	15	70	01 250 20	aluminium	1.65

VACUUM CUP WITH SUPPORT

ltem	Force Kg	A Ø	B Ø	C Ø	D Ø	F	Н	М	Vacuum cup item	Support item	Weight Kg
08 250 20 *	122.60	237	M12	G3/8"	254	15	23	70	01 250 20	00 08 115	1.78

^{*} Complete the code indicating the compound: A= oil-resistant rubber; N= natural para rubber; S= silicon

Note: The force of the vacuum cups indicated in the table represents 1/3 of the value of the theoretical force calculated at a level of vacuum of -75 KPa and a factor of safety 3. Transformation ratio: N (newton) = Kg x 9.81 (force of gravity) inch = $\frac{mm}{25.4}$; pounds = $\frac{g}{453.6}$ = $\frac{Kg}{0.4536}$ Adapters for GAS - NPT threading available on page Adapters for GAS - NPT threading available on page 1.130